יום שני, 10 באוקטובר 2011

הוכחת משפט בגיאומטריה: שטח דלתון מחושב כמחצית מכפלת האלכסונים

הוכחת משפט בגיאומטריה: שטח דלתון מחושב כמחצית מכפלת האלכסונים
דלתון עם אלכסוניו
נתון מרובע ABCD דלתון (AB = AD, BC = CD)
אלכסון ראשי AC = a = a1 +a2
אלכסון משני BD = b
נקודה O - נקודת מפגש אלכסוני הדלתון

צריך להוכיח: שטח הדלתון (S) שווה למחצית מכפלת האלכסונים.
כלומר: S = a*b/2

הוכחה:
האלכסון המשני BD = b מחלק את הדלתון לשני משולשים שווי שוקיים ABD, ו- BCD.
כמו כן האלכסונים בדלתון מאונכים אחד לשני, לכן AO=a1 הוא גובה המשולש ABD, ו- CO = a2 הוא גובה המשולש BCD.

שטח המשולש ABD: (בסיס כפול גובה לחלק לשתיים)
S1 = a1*b/2

שטח המשולש BCD:
S2 = a2*b/2

שטח הדלתון הוא סכום שטחי המשולשים ABD, ו- BCD.
או :
S = S1 + S2 = a1*b/2 + a2*b/2 = a*b/2

מ.ש.ל

אין תגובות:

הוסף רשומת תגובה