יום שבת, 10 בדצמבר 2011

הוכחת משפט בגיאומטריה: זווית חיצונית למשולש שווה לסכום שתי הזויות הפנימיות שאינן צמודות לה

נתון: משולש ABC שבו שלשה זוויות פנימיות A, B1, C וזוית חיצונית B2 הצמודה לזווית B1.

צריך להוכיח: זוית B2 = זוית A + זוית C

הוכחה:

1. זוית B1 וזוית B2 צמודות ולכן סכומן 180 מעלות
2. זויות B1 וזויות A, C הן זויות המשולש ולכן סכומן 180 מעלות - סכום זויות המשולש 180 מעלות

מכאן זוית B2 = זוית A + זוית C - נובע מ-1 ו-2. שני הגדלים משלימים עם זוית B1 ל- 180 מעלות ולכן הגדלים שווים.

מ.ש.ל

אין תגובות:

הוסף רשומת תגובה