‏הצגת רשומות עם תוויות משפט פיתגורס. הצג את כל הרשומות
‏הצגת רשומות עם תוויות משפט פיתגורס. הצג את כל הרשומות

יום שלישי, 25 בספטמבר 2012

משפט פיתגורס - "סכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר זווית, שווה לשטח הריבוע הבנוי על היתר"

 משפט פיתגורס - "סכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר זווית, שווה לשטח הריבוע הבנוי על היתר"
משפט פיתגורס הוא משפט גאומטרי מפורסם, המתאר את היחס בין שלוש צלעותיו של משולש ישר-זווית. המשפט קובע כי "סכום שטחי הריבועים, הבנויים על הניצבים במשולש ישר זווית, שווה לשטח הריבוע הבנוי על היתר" (הניצבים הם שתי צלעות הזווית הישרה, והיתר הוא הצלע הארוכה של המשולש). או בניסוח פורמלי: אם אורכי הניצבים במשולש ישר-זווית הם ו-, ואורך היתר הוא , אז: .

דוגמא:
נתון משולש ישר זוית שאורכי ניצביו הם 3, 4, מצא את אורך היתר

אורך היתר c:

אורך היתר c שווה 5.

הוכחת הנשיא גרפילד למשפט פיתגורסהוכחת הנשיא גרפילד למשפט פיתגורס

ישנו משולש ישר זוית שניצביו a, b והיתר c.
בונים ממשולש זה וזה לו טרפז ישר זוית ומחשבים את שטחו בשני אופנים.

מצד אחד, הוא שווה ל-  , כיוון ששטח טרפז שווה למכפלת הגובה במחצית מסכום
הבסיסים.

מצד שני הוא שווה ל-     כי הוא שווה לסכום שטחם של שני המשולשים האפורים עם
המשולש שביניהם הלבן

מהשוואת שני הביטויים שהתקבלו, המייצגים את אותו השטח, מתקבל משפט פיתגורס.

יום שני, 17 בספטמבר 2012

משולש שווה שוקיים - מציאת השטח ע"פ הצלעות

משולש שווה שוקיים - מציאת השטח ע"פ הצלעות
משולש שווה שוקיים
בגאומטריה, משולש שווה-שוקיים הוא משולש ששתיים מצלעותיו שוות זו לזו. הצלעות השוות נקראות "שוקיים" והצלע השלישית נקראת "בסיס"

 בשרטוט להלן הצלעות השוות, שוקיים, מסומנות באות b , הבסיס באות a.


הגובה h במשולש שווה שוקיים יכול להימצא ממשפט פיתגורס:




מכאן ניתן לחשב את שטח המשולש S:

קישורים: 

חוצה זוית במשולש שווה שוקיים הוא תיכון, ומאונך לצלע ממול 
זוויות בסיס במשולש שווה שוקיים שוות.

יום רביעי, 30 במאי 2012

מבחן מיצב כיתה ח תשע"א פתרון שאלה 21


שאלה 21
לפניכם סרטוט של מחומש ABCDE המורכב מריבוע ABDE וממשולש ישר-זווית BCD.


א. מה שטח הריבוע ABDE? הַציגו את דרך הפתרון:

נמצא תחילה את אורך צלע BD של הריבוע ABDE, ע"פ משפט פיתגורס.
משולש  BCD ישר זוית (זוית C ישרה) לכן סכום ריבועי הניצבים BC, ו- CD שווה לריבוע היתר BD:

או בהצבה ופתרון:


שטח ריבוע שווה לריבוע צלע מצלעותיו השוות, בעצמה:
שטח הריבוע :   


ב. מה שטח המחומש ABCDE? הַציגו את דרך הפתרון:

פתרון סעיף ב
שטח המחומש ABCDE מורכב משטח הריבוע ABDE ושטח המשולש ישר הזוית BCD. נמצא את שטח הריבוע ושטח המשולש, נחבר אותם, ונקבל את שטח המחומש.
שטח ריבוע ABDE -מצאנו בסעיף א:
שטח המשולש BCD - שטח משולש שווה למחצית מכפלת צלע בגובה לאותה הצלע. כאשר המשולש ישר זוית, הניצבים מהווים צלעות וגבהים אחד לשני, לכן שטח משולש ישר זוית שווה למחצית מכפלת ניצביו.
שטח משולש BCD:

שטח המחומש ABCDE הוא סכום שטח הריבוע ושטח המשולש: 91.5 = 74 + 17.5


ג. מה היקף המחומש ABCDE?







פתרון סעיף ג
היקף המחומש P שווה לסכום צלעותיו:

 
התשובה הנכונה היא מספר 3.

קישורים:

יום חמישי, 14 באפריל 2011

הוכחת משפט הקוסינוסים

משפט הקוסינוסים מתאר את הקשר בין גודל שלושת הצלעות במשולש וקוסינוס הזווית שבין שתיים מהן. משפט הקוסינוסים הוא למעשה הרחבה של משפט פיתגורס למשולשים שאינם משולשים ישרי זווית.
ע"פ משפט הקוסינוסים במשולש שצלעותיו a, b, c והזויות מול הצלעות בהתאמה A, B, C - מתקיימים השיוויונים (ראה סקיצה ושיוויונים משמאל):
משפט הקוסינוסים - תיאור ומשוואות

הוכחת משפט הקוסינוסים:
 הוכחת משפט הקוסינוסים 

קישורים: